
Spencer Dallas
ARCX Inc
July 2018
Revision 6

Space Invaders Tutorial

Contents
Demo the Game .. 3
Development Environment .. 4
Server Hosting .. 7

Internet Information Services .. 7
FlexFrame ... 11
Wiring the Joysticks ... 14
Powering the Box .. 18

Standard Power ... 18
Power Over Ethernet ... 20
Connecting the box to IIS .. 22

Code ... 24

001: HTML and CSS ... 25
002: Variable Declaration .. 26
003: Movement Variables .. 28
004: Sprite Arrays .. 30
005: Objects .. 34
006: Start Game .. 36
007: Starting and Stopping Timers .. 38
008: Background Display .. 40
009: Player Movement .. 41
010: Finding Pressed Buttons ... 42
011: Shoot Function .. 43
012: Alien Movement ... 44
013: Hit Registration .. 46
014: Score Handling .. 48
015: Barrier Decay .. 49
016: Alien Shooting ... 50
017: Drawing Aliens and Barriers .. 51
018: Bullet Movement .. 52
019: Endgame Conditions ... 53
020: Winning and Losing ... 54
021: Restart Conditions ... 56
022: Sprite Animation .. 57
023: Collision Function .. 59
024: Sprite Drawing ... 61

Introduction
The purpose of this project is to get a better understanding of developing applications for

the ARCX Inc Logic Controllers. This document discusses developing Web Automation Toolkit
(WAT) applications on your local machine, staging and debugging the application locally and
finally deploying the application to a target ARCX Device. WAT is an API and series of
development languages using HTML5, JavaScript and CSS3.

Demo the Game
Start by running a sample of the game in our local browser. It is recommended to use

Google Chrome Browser.

Enter the following URL (this code is adapted to work on a computer, not on the UP3K)

https://support.arcx.com/demos/SpaceInvaders/SpaceInvaders.html

In playing the game one gets a feel for all the moving parts. Notice the following;

● Movement and pattern of the aliens and the player

● the breaking of the barriers increases the score

● the death of each alien does not affect the next, even though they all move together

● the bullets starting at the player or alien become their own object and flying away
from the player or alien

● how the player ship breaks when it dies, the aliens explode, and the barriers erode

● smaller details, such as how a bullet will pass through an exploding alien but still

stop at an eroding barrier.

Once an understanding of the game is gained, the source code will be much easier to understand.

Development Environment
Next, set up the components needed to code the application.

Install a text editor. Notepad++ is recommended:

https://notepad-plus-plus.org/download/v7.5.7.html

Windows Notepad can be used, but without context highlighting, it is more difficult to find
syntax errors. Other web development source code editors can be used and left as an exercise
to the reader.

Once the editor is open, HTML is used to set up the framework for a webpage. The
following is how you make a page with the text “HELLO WORLD” displayed.

Note: <html> is called an html tag. </html> is called a closing tag. This works for any
contents of the tag. <p></p>, <body></body>, <script></script>, etc.

Figure 1

Save the text document as "SamplePage.html". This will tell the computer that it is an html

file, and not a standard text file. After saving this, the tags will be highlighted. Now, open the saved
file, and it will open a web page with the desired text.

Figure 2

There is more function to a webpage than plain text, so a more complete framework would

look like this:

Note: “//” means the code is commented out. This is used to describe code, but the
commented does not actually run.

<html> //starts the html page
 <head> //header, this does not show up but affects the body
 <title>

My Sample Page
</title>

 <style> //starts CSS, affecting how the page is displayed

 </style> //closes the CSS
 </head> //closes the header
 <body> //this is where html code goes
 <p>

HELLO WORLD
 </p>

 </body> //ends where html code goes
 <script> //starts where javascript goes

 </script> //ends where javascript goes
</html> //ends the html page

This page would output the same thing; it just includes the ability for CSS and JavaScript
to be added to the code.

Almost all the code written for this game is in JavaScript (between the script tags), but

there are some details written outside. HTML is like a framework; It sets up the structure for the
rest of the code, and provides the basic resources to work with. CSS goes farther, allowing styling
and more dynamic visuals to the page. It allows the programmer to directly interact with what
appears on the page and change its appearance. JavaScript allows further function of the page.
With it, the user is able to access more data in more interactive ways.

Write the complete framework notepad++ and save the text document as

"SpaceInvaders.html".

Server Hosting
Why you need to host the application:

This project hosts a server using both Internet Information Services and FLEXframe.
Hosting servers allows multiple users to access the program from different machines, as well as
allows easier testing for code. They also allow deployment where users can run the code on
several different types of machines (computer vs. UPPK) from the same place.

Internet Information Services

 The first way to execute the code is through Internet Information Services. This runs
through windows and is quick and simple to set up locally with no prior knowledge.

To set up IIS, go to the control panel. Click on “programs”, click on “programs and
features”, and from there find “Turn Windows features on or off.” From here, turn on Web
Management Tools and World Wide Web Services. The computer may need to reboot to complete
this process.

Figure 3

Now, if everything is set up correctly, a search for localhost in the browser, you should

display this:

Show what you type in chrome here

Figure 4

Now that this is active, go to IIS manager. This can be done by searching for internet

information services in the windows search bar and checking for the manager. It should look like
this:

Figure 5

 On the right side, under manage server, start the server, and make sure to restart the
server whenever files are modified.

 To run code on a server you will need to know/have:

 The computer’s IP Address

 A file installed (hosted) on the server

The computer’s IP will be first. To get the computer’s IP, search cmd in the windows
search bar. It will open a log. Type ipconfig, press enter, and look for IPv4. This is the local IP that
will be used.

Figure 6

 In this example, the IP is 192.168.2.177. This may not match yours.

Now to run the chosen file, add it to the root folder, the default folder to be accessed when
IIS is accessed by the computer. To do this, look for the root folder within C:\inetpub\wwwroot

Figure 7

Place SpaceInvaders.html in this wwwroot folder.

Once complete, the file should look like this:

Figure 8

 To run the code on the computer, search the computer’s ip followed by the file name like
this in the browser:

Figure 9

 Note: Use of the word local refers to the development machine as opposed to the target
hardware device. If the file is being manipulated on the same machine as the server is being
hosted, the IP can be replaced with “localhost”. This would look like
“localhost/SpaceInvaders.html”

FlexFrame

This code uses FlexFrame version 1.2.1, this code may not be valid in all future updates.

Open the flexframe installer on your desktop and install the program. To run the program,
search for FlexFrame Command Prompt and open it. It will take you to this screen.

Figure 10

Now the directory must be pointed to the file you want to store your FlexFrame files. The
command cd is used, followed by a directory. This example uses a test file on the desktop.

Figure 11

Now the FlexFrame console is pointing to the desired folder. Next to create all the

initialization files necessary to run FlexFrame, use the command “flexframe config” and press
enter when prompted. This will create files called “FlexFrame.json” and “index.pug.”

Figure 12

 After this, place the SpaceInvaders.html file in the folder being accessed, so it looks like
this:

 Next, in the index.pug file, use notepad++ add a line to include SpaceInvaders.html in its
running operation.

Finally, in the flexframe command prompt, use the command flexframe to host a server
that runs the code in the index.pug file.

Figure 13

To access this server, similar to in IIS, the IP of the host machine is needed. Earlier it was
established the example IP is 192.168.2.177, The other information needed is the port the server
is hosted on, shown in the last line of the current FLEXframe command prompt. The default port
is 5000, and that is what this example shows. To run the code, serch for the host IP followed by
the port, like so:

Wiring the Joysticks

The wiring can be done in many configurations of inputs, but this is the wiring setup that

works with the provided code.

Figure 14

The joysticks connect to the inputs on the side below the screen. The wires from the

joysticks plug into a terminal block which then plugs into the UP3K itself. This is the end product.

Figure 15

 This is the orientation the box should be in for wiring. The joysticks should be upside down
with the wires on the top left side towards the back.

Figure 16

These are the wires labelled 1 through 5, 1 being the common (or ground) wire, and the

rest representing a direction the joystick is held.

Figure 17

 This shows the opposite end of each wire 1 through 5. Screw the wire into the desired port
of the terminal block, then plug the terminal blocks into the UP3K where it is labelled inputs as
shown in the first figure of this section.

 When plugging in the terminal blocks, make sure the left joystick goes to the left inputs
(16-13) and the right joystick goes to the right inputs (12-9).

Powering the Box

 There are two ways to power the box. One way uses the standard ports, and the other
uses power over Ethernet.

Standard Power

Connect the power cable to the UP3K

Figure 18

Figure 19

Connect the Ethernet cable to the UP3K and the network source.

Figure 20

Power Over Ethernet

Connect a POE (power over Ethernet) injector to the standard power source and the

network source, and then connect the POE line to the Ethernet port on the UP3K.

Figure 21

Figure 22

Connecting the box to IIS

 Connect the box to the internet, and power it up. The box will turn on.

<Add screen shot>

When this happens, click configuration once the option appears. From this screen, the
UP3K’s ip address will show, highlighted in red.

Figure 23

Type the IP into a browser.

Figure 24

Now the website can be used to access to the box's functions. The code that the box

executes can be changed by putting the URL into the "Initial URL" box at the top, highlighted in
red.

Figure 25

 When the UP3K accesses the initial URL below, it is going to the IP address of the
computer, then in the root file, it is looking for the file “SpaceInvaders.html”, and it is running the
code in that file.

 Make sure the IP address in the ‘Initial URL’ box is the IP of the machine hosting the
server, not the box or a machine that is not related to this interaction.

Code

 The rest of this document will explain the code. There will be references throughout that
lead to other sections of code. On digital copies, the references can be clicked on to move to the
referenced section, and on paper documents, a reference of (001) will be referencing the first
section of code which will be titled 001. Names for all variables and functions will be descriptive
of their function, so if it is understood what the function does as a whole, continue to understand
the current function instead of jumping around the code constantly.

001: HTML and CSS

Figure 26

This is where the code starts, from lines 4 to 11, in the style tags, CSS is added, which
simply removes the scrollbar and whitespace. Border, margin, and padding being 0 pixels wide
ensures that everything made is exactly the expected dimensions. Turning off the overflow means
there are no scrollbars if the page takes up the whole screen.

● In line 13, the onload function means that once the whole document has loaded, a function
called startGame is called. This sets initial conditions for the game and is described in
(Error! Reference source not found.).

● On line 14, a canvas in html is instantiated, and it is given an id of canvas so it can later

be called on in JavaScript.

002: Variable Declaration

Figure 27

This section initializes global variables used in the program. This is done to facilitate easier

to read code. Variables are named accurately, and reading this will give understanding of some
of the variables used later.

There are 5 lines that are currently vital, lines 18 to 22:

 Line 18 creates a JavaScript variable of the html canvas from (Error! Reference source
not found.) line 14. This can now be called on easily

 Line 19 gets the canvas’ context, which allows drawing and renders it in 2D.

 Line 21 and 22 set the width and height of the canvas, which is set to the dimensions of

the UP3K screen.

 Line 20 is related directly to the UP3K that the program runs on. It imports the hardware
so the different inputs for the controller can be accessed.

003: Movement Variables

Figure 28

 These variables, as line 53 suggests, are movement based.

 Lines 54 and 55 set up variables for timers that are defined later in (

007). These will call on certain functions on consistent time intervals when they are
defines.

 Line 56 defines how much the aliens move down the screen when they contact the edges
in (Error! Reference source not found.).

004: Sprite Arrays

Figure 29

This group of code is all sprites, made manually.

Figure 30

This is barrier1, the default state of a barrier, with all of the 1s highlighted. This is an array

of arrays, that is, vertically; there are 7 arrays, each containing 19 horizontal values, creating a
grid that can be used for a 2d shape. The 1s define the shape of the barrier, and the 0s define
where the barrier is not. In drawSprites at (Error! Reference source not found.), there will be
more detail about how it works, but essentially, all the 0s will be a 5x5 pixel square (as determined
by pixelSize defined in (Error! Reference source not found.)), and all the 1s will be a 5x5 pixel
square coloured white.

005: Objects

Figure 31

This code defines objects for all the elements of the game. The objects contain all of the

vital information in one grouping. This makes two steps easier: now there isn’t a clutter of variables
called playerSpeed, playerSprite, playerXCoordinate, etc, and objects can be called on with
player.attribute*. This helps keep the code clean and readable.

Another purpose of this is when there are many similar objects with only a few differing

properties (like position). The variables x and y defined in all of these objects are the coordinates
of the top left corner of the object (the object will later be drawn using a sprite assigned from
(Error! Reference source not found.)), and using objects like this there can be a list of aliens
that all hold the same features but have differing coordinates. These are assigned by defining

them either in the object function or passing them through. The keyword “this” defines an object
attribute. More on spriteId and sizes in (Error! Reference source not found.).

The player x and y are set to 0, meaning that the player starts at the left side of the screen,

and canvas.height-32, starting the player 32 pixels from the bottom

006: Start Game

Figure 32

startGame sets up all the initial conditions.

 Line 247 and 248: an empty array is initialized that will later be filled with alien objects

from (005), but there are no aliens yet.

 251 and 252 do the same for bullets, and 253 does the same for barriers. These variables
are initialized and will be filled farther down.

 Line 252 and 253: Fills the entire canvas black, which is in this case, is the entire screen.
This makes the background of the game black.

 Lines 254 to 256 make the drawing white, create a player, and then draw the sprite of the
player using drawSprite (024). This starts the player in the bottom left corner as described
at the end of (006).

 Lines 257 to 274 create all the initial aliens. The resulting array of aliens will be a 1D array,

but all the aliens require different x and y coordinates.

yAliens was defined in (002) as the number of aliens that appear vertically, and xAliens is
defined to be the number of aliens that appear horizontally. There are two nested for loops, i going
through yAliens, and k going through xAliens. This is to say, for all i rows of aliens, there are k
aliens per row. Depending on the i value, meaning what row it is in, a sprite is assigned, which is
why aliens at different heights have different sprites.

With the nature of the array incrementing by 1, all aliens will be 1 pixel away from each
other, so the coordinate is multiplied by an offset, which creates a space between all the aliens.
Now the aliens can be created. The aliens are assigned the x and y coordinates made with k*offset
and i*offset, give it a size of 3 (the overall size of the alien sprite). The alien is assigned a sprite,
and assigned a sprite number so the sprite can be changed in (022).

 Line 272 increments to keep track of the number of aliens present. This is needed because
the game is won when there are 0 aliens.

*The squares would be replaced with sprites defined in (004)

 Lines 275 to 278 create barriers. For all four barriers, line 276 pushes (adds) a barrier to

an array and places it evenly spaced across the screen.

 Line 277 draws the barrier on to the canvas using drawSprite (024).

 The function ends by drawing the aliens (017) and starting the timers to run the game
(003).

007: Starting and Stopping Timers

Figure 33

This will have two parts, the timers, and the running of the game. First addressed is the

timers. The format of a timer is fairly simple:

 Create a variable, and then inside the parentheses, give a function and a time.

 For movement timer, the time is 3 milliseconds, and the function is runGame.

This means that every 3 milliseconds, runGame will execute. spriteAnimation means that

every 500 milliseconds, or half second, changeSprites (022) will run. stopTimers takes these
timers, and clears them, and sets them to undefined. The interval is cleared after the player wins
or loses so that everything pauses in its place (020).

 This leads to runGame, which runs every 3 milliseconds when the game is running. This
refers to each function in order to put everything in place.

 Reset canvas: (008)

 Update display: (008)

 Move player: (009)

 Move aliens: (012)

 Draw barriers: (017)

 Move bullets: (018)

 Check endgame: (019)

008: Background Display

Figure 34

resetCanvas is similar to (006) lines 254 and 255, but with one extra step.

 Line 298 clears the canvas, getting rid of everything on it, leaving it blank white.

 Line 299 sets the colour of our next drawing to be black

 Line 300 fills the entire screen black.

 updateDisplay is the small text in the upper left that shows what level the player is on and
what the score is. The font is set to size 13 Arial. The text is set to show up on the left, and it is
set to be filled in with the colour white. After this, text is written in displaying the level and score 0
pixels from the left side and 10 pixels from the top.

009: Player Movement

Figure 35

This function handles all the player’s movement

 Lines 313 and 314 will be handled in (010)

o After these, it is assumed that the joystick is being held actively

o If it is being held up, the player shoots. More detail on this in (011)

o If the joystick is being held left, and the player is not yet at the left edge of the
screen, the player moves to the left by the player’s speed, which was declared in
(005)

o If the joystick is being held to the right and the right side of the player is to the left

of the right side of the screen, the player moves to the right by that same speed.

After this the drawing colour is set to white, and in line 325 the player is drawn onto the
canvas where its new coordinates are. Keep in mind that at the time of this happening, the canvas
has just been set black and drawn the score in the top left only. The last position of the player has
been cleared, so only its new position is seen.

010: Finding Pressed Buttons

Figure 36

 These two functions could be merged into one with the UP3K, but this is more closely
related to how it would be done on a keyboard. Since in (002) line 20 the UP3K hardware was
imported, digital inputs can be accessed. First check what input the controller is plugged into, and
subtract 1, since JavaScript is zero based. From that point check that input’s state, and if it is true,
then that means the controller is triggering that input. The three inputs the controller is using are
checked to see if they are active, and if they are, it sets the index of pressedButtons to 1. In
findUnpressedButtons, inactive buttons are found, and the same indexes are set to 0. This means
that later, the array holds all the information of pressed and unpressed buttons, and no further
checks are required.

 Index 0 is shooting, index 1 is moving left, and index 2 is moving right.

011: Shoot Function

Figure 37

 As defined in (009) line 316, if the joystick is held in the upward position this function will
run. First it gets the current date, and the next line converts that date into time in milliseconds. In
(006) line 250, the fire timer for players is set, that is, how long the player has to wait to shoot
again. The last shot either never occurred, where it would be 0, or is the time in milliseconds of
the previous shot. If must be determined if the current time, in milliseconds, is higher than the
time of the last shot in seconds plus the time it takes for the player to fire. If it is not, the program
will do nothing.

 If it is larger, the player will shoot a bullet. First there is a bullet counter, which is the total
number of bullets shot since the start of the level. There is an array of bullet objects, and when
the player shoots, a bullet is added to that array at the index of the number of bullets that have
been shot, starting back at 0, every 20 shots to save memory. The bullet is created at the position
of the horizontal center of the player, and at the player’s height. After this, the time of the previous
shot to the time of this shot, to make sure another shot doesn’t happen until the fire time is up.

012: Alien Movement

Figure 38

 The function moveAliens covers all movement covered with aliens, and all object
interaction. Line 364 and 365 will be covered in (013) and (016), but essentially checkForHits
handles all objects coming in contact with each other. This includes bullets, barriers, and aliens.
alienShoot is the function that covers the aliens shooting back at the player.

 Line 367 to 376 handle contact with the edges. The for loop on 367 checks all the aliens,
and the if statement on 368 says that if an alien hits the right side of the screen, and the alien is
alive (not undergoing its death animation), the direction is made negative and edgeContact states
that there has been contact with an edge. The other statement on 372 says that if an alien has hit
the left side of the screen and is alive (not undergoing its death animation), the direction it travels
is made positive and edgeContact states that there has been contact with an edge. After this the
speed is determined by the following equation:

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑀𝑎𝑡ℎ. 𝑎𝑏𝑠ሺ
𝑙𝑒𝑣𝑒𝑙

3
 0.6

2
𝑎𝑙𝑖𝑒𝑛𝐶𝑜𝑢𝑛𝑡

ሻ ∗ 3;

 The direction, based on the last wall hit, is multiplied by the absolute value so that no other
variables can ever have an effect on this.

 Level / 3 makes the speed get somewhat faster every level.

 0.6 is a base speed that is added to make the game always fun, not dead slow on level 1

 And 2/alienCount means that as aliens die, the remaining aliens will speed up, starting

small, and getting very fast at the end.

 The code from Lines 379 to 384 moves the aliens. The for-loop scrolls through all the
aliens and moves them horizontally by the defined speed. After this, if one of the previous
statements says that there is contact with the edge, the aliens move down by a distance defined
in (002).
 Now edgeContact is reset to 0. This means that it will be 0 until another alien next hits an
edge, and means that aliens don’t keep moving down forever once they touch an edge once. Now
the aliens are drawn in their position, further discussed in (017).

013: Hit Registration

Figure 39

 Line 390 makes sure there are bullets, because if there aren’t, looping through the array
of bullets would throw an error.

 Lines 392 and 393: for each alien, check all of the bullets

 Line 394, if they collide (023), the function handles how the objects are supposed to
interact.

First the score for the aliens is added, which will be further described in (014). The alien’s

sprite is set to the start of its death animation, and its spriteId is set to 1. After this, alive is set to
false, meaning the bullet can’t collide with the alien again, and a dead alien wont trigger all the
aliens to switch directions. Then splice the bullet array, which removes the bullet from that
position, so the bullet stops existing on contact with an alien. After, the number of aliens in
alienCount is decreased, then the loop is exited.

 Next, check everything that involves barriers, which have lots of interaction. For every
barrier, each alien is checked, making the barrier disappear if it contacts an alien. After this, each
bullet is checked. If it contacts the barrier, the barrier breaks a bit (015), and the bullet disappears.
Next check each alien bullet (016), and it interacts with the barrier in the same way a player bullet
does.

014: Score Handling

Figure 40

 Since a simple comparison between sprites is not possible, a spriteId is assigned to track
what sprite each object has using an integer.

 This function is started by knowing an alien is dead and which alien it is. The program
takes this alien, checks its spriteId, and based on that, adds a certain number to the score.
Additionally, as a reward to players for making it to higher levels where the aliens are harder to
kill, additional points are added based on the level the player is at.

 Aliens with spriteId of 31 or 32 are the top level, and will earn most points. Aliens with a
spriteId of 11 or 12 are the lowest aliens, and will give the lowest score.

015: Barrier Decay

Figure 41

 If a bullet hits a barrier, the barrier will be passed into the function decayBarrier. The
object’s spriteId will be determined and increased by 1. The sprite is then set to the next sprite,
defined in (004), and the barrier will appear more eroded.

016: Alien Shooting

Figure 42

 This function is very similar to shoot at (011). The only difference is that instead of
defaulting the bullet to the player’s position, it picks a random number between 0 and the number
of aliens, then makes the alien at that index shoot a bullet. The value is stored in alienBulletarray
instead of the regular bulletArray. The difference comes in moveBullets in (018).

017: Drawing Aliens and Barriers

Figure 43

 Functions drawAliens and drawBarriers are near identical, spare the fact that one deals
with an array of aliens, and the other an array of barriers. They check if there are any aliens or
barriers, because if there aren’t, there is no point in executing the rest. They check all the aliens
and barriers, and if the position in each array isn’t empty, it will draw the sprite (024) of the object
in its location.

018: Bullet Movement

Figure 44

 Function moveBullets deals with bullets shot by the player and from aliens. First, the
function addresses bullets shot by the player, so, all indexes of bulletArray are checked. For all
that contain a bullet, the bullet is moved up by a speed assigned in (002), and its sprite is drawn.
(024)

 After this the same process occurs for alien bullets. All indexes of alienbulletArray are
checked, and for all that contain a bullet, the bullet moves down by 70% of the player’s bullet
speed, and their sprite is drawn (024).

019: Endgame Conditions

Figure 45

 Function checkEndGame tests the conditions for win or loss. The condition for winning the
level is that all the aliens are dead, so if the count of aliens is 0, the player has won, and can start
the next level(020).

 There are three ways for the player to die: the aliens hit the player, the player gets hit by
a bullet, and the aliens reach the bottom of the screen.
Line 535 tells if the player has been hit by an alien. It checks if any alien hits the player (023), and
if this happens, it runs the loseGame function (020).

 In the same way, it checks if any of the alien’s bullets hit the player, and if this happens, it
runs the losegame function (020).

020: Winning and Losing

Figure 46

 First winGame will be discussed.
 Initially the timers are stopped. Next some basic variable handling occurs. Leveling up will:

 Add 200 to the score

 Make the player fire faster

 Make the aliens fire slightly faster

 Increase the level
o Aliens also have their movement speed in part based on level (012)

 Next printing text is handled, this has been described in (008), but the winGame and
loseGame sizing is slightly different. First, all the text is set to 50 pixels large.

 In line 557, text is aligned to the center. Because of this alignment, wherever text is placed,
it will be centered and not taking up differing space depending on the text width.

 Lines 558 and 559 print the level ⅓ of the way down the screen in gold.

 Lines 560 and 561 outline this in black.

 Lines 562 to 565 do the same thing but for the score, and perfectly in the middle of the
screen.

 Line 566, runs the function startGame after 2500 milliseconds, or 2.5 seconds.

 loseGame runs in a very similar fashion. This one stops for an indefinite amount of time,
so stopTimers is called (003) to avoid background running. The player’s sprite changes to one of
a broken player ship (004) to show that the player has lost. After this, it resets the canvas (008),
prints the score and level in the top left (008), and redraws the player without moving them (024).
After this the function draws the aliens and barriers (017) so that the player can see exactly what
hit them and how they lost. Now the score is printed in the center of the screen the same as in
winGame, so the player can see how well they did. After 2500 milliseconds, or 2.5 seconds, the
player is offered an option to restart the game (021).

021: Restart Conditions

Figure 47

 The first function offerRestart happens 2.5 seconds after the player loses, and it creates
text in the same way as in (020), giving the player instructions to restart the game. Now, every
350 milliseconds the game will run restartGame.

 The function first checks for all the buttons the user is and is not holding down (010). If the
player is holding the joystick both up and to the right, the fire speed resets, the timers are stopped
(003), and the level is set back to 1, and the score to 0. Then, startGame (006) is run, which will
run everything at its initial conditions, completely restarting the game. If the player is not holding
the buttons, nothing happens.

022: Sprite Animation

Figure 48

 In (003), timers were set, and one of them was for changing sprites. This function runs
every 500 milliseconds, or every half second. Every alien is checked in a for loop, and the alien’s
spriteId is checked so the program knows what sprite they are. Based on this sprite, it is switched
to another sprite, which makes it look animated.

If an alien dies, its spriteId is changed to 1. This is the first step of a death animation. This
will change to 0, the second part of the death animation, and it will then disappear and be spliced
out of the array (013).

Barriers are only active here if they reach case 5. They don't animate until their death

animation, where they will hit their last 2 sprites, then be spliced out similarly to the aliens.

Note: sprites are shown in (004).

023: Collision Function

Figure 49

Figure 50

 This is the general structure for an object, it has an x, based on its distance from the side
of the screen, and it has a y, based on its distance from the top of the screen. These are the
different parts of the object:

 Object.x is the left side of the object

 Object.x+object.width is the right side of the object

 Object.y is the top of the object

 Object.y+object.height bottom of the object

 In line 656 the function gets two objects, and names them object 1 and object 2 for the
generalization of the function. First it checks if object 2 is null, which is checked so the function
does not return an error for no object existing. If it is null, it cannot collide, false is returned (no
collision).

 In line 659 the function starts a multi-line if statement. The four bullet points above are
further explained in a more understandable language.

Note: (0,0) is the top left corner of the screen. X increases to the right, and Y increases
downwards.

Else if(

 The right side of the second object is farther right than the left side of the first object

 The left side of the second object is farther left than the right side of the first object

 The top of the second object is above the bottom of the first object

 The bottom of the second object is lower than the top of the first object

)
 If all of these conditions are true, then one object’s hitbox is inside another’s hitbox, so
there is a collision. If this is the case, the function will return true (collision).
 If all of these conditions are not true, then it means one object’s hitbox is not inside
another’s hitbox, so there is no collision. If this is the case, the function will return false (no
collision).

024: Sprite Drawing

Figure 51

 Function drawSprite takes in four variables. The first is the sprite assigned to the object; it
will be from the list in (004). After it will take posx, which is the object's x coordinate, and posy,
which is the object’s y coordinate. Next size is inputted, which is the size desired for each pixel.

 This is a nested for loop creating a grid, similar to in (006). The function creates this grid
using white squares where a 1 is found in the array, and empty squares where there is no 1.
Recall in (004) where there was a barrier sprite with all the 1’s highlighted, showing the shape of
the barrier.

 The function goes through each row, creating an array for that row, calling it spriteX.
Searching through this array, where there is a 1, a white rectangle is printed. Once each row is
searched, the sprite will be completely printed.

 The white rectangle is drawn using:

fillRect(x coordinate of top left corner, y coordinate of top left corner, x length, y length);

 where:

 X coordinate: width * size puts the white rectangle in its place in the sprite horizontally.
Adding posx puts the sprite in its place on the entire game screen

 Y coordinate: height * size puts the white rectangle in its place in the sprite vertically.

Adding posy puts the sprite in its place on the entire game screen

 (for both) size + 1 is the length of the edge of the square. Add 1 to this pixel width so the
player can’t see the grid of computer pixels underneath the sprite model, and it looks solid.

