eeeeeeeeeeeee

Space Invaders Tutorial

Contents

(=T 0 g Lo TR (TN C 7= T o 4 1= TSRS 3
Development ENVIFONMENL........oooii e e e e e e e e e e e e e s 4
SNV HOSTING ...ttt e e e e ettt e e e e e e e e e e e e e e e e n e e aaeeaas 7
Internet INfOrmation SEIVICESoooiiieie e s 7
FIEXFTAME ... ettt e e e e e e e et e et e e e e e e e eeets st e eaeeeseessannnaaeaaans 11
WIiNG the JOYSHCKS....ceiii e e e e e e e e e ara s 14
POWETING e BOX ...ttt e e e e et e e e e e e e e e reeaeeas 18
STANAAIA POWET ...ttt e e e e e e e et e e e e e e e e e e nnnnraeeeeeeeeanns 18
Power OVer ETNEINEL e 20
Connecting the DOX 0 IS ... 22
L7 o [R 24
010 1Y =T o O SRR 25
002: Variable DecClaration e 26
003: MovemMENt Vari@bIes........ ... e 28
00 BT o T4 (= AN 5 = |2 7 30
(0101 O o= £ T PP PPPP PP 34
006: StAI GAIME ... 36
007: Starting and StOPPING TIMEISuuuuuei e a e a e e e e e eas 38
008: Background DiSPIAYuuuiiiiiiiiiiiiiiiie et 40
009: Player MOVEMENTcouiiiiii ettt e e e e e et e e e e e e e e e et e e e e e e e e eaarnaaeaaeaeas 41
010: Finding Pressed BUHONSooiiiii e 42
011: SNOOt FUNCLION ... e 43
012: AlIEN MOVEIMENL. e 44
013: Hit REGISTIAtIONceiiiieiiiee e e e e eanee e 46
014: SCOre HaNAIINGuuuuiiiiii e nnnnnns 48

O RN = F= Ty 1Y gl 91T o= 49
0716: AlIEN SNOOTING ...ttt et e e e e e e e e e e e e e e nneee s 50
017: Drawing AlIens and BarriErScuuuuiiiii et e e e et s e e e e e e e eeana s e e aaeeeees 51
018: BUIIEt MOVEMENL ... e 52
019: ENAgame CONItIONSuuuuuuiiiiiiiii e nnnanns 53
0724 0 B VAV T a1 o = To I I X< o Vo 54
021: Restart CONAItIONS e 56
022: SPrit€ ANIMATIONueeiiii e nnnnnnas 57
023: ColliSION FUNCHONutieite s 59
024: SPIItE DIAWINGeeeeeiieiiiii ettt ettt e e e e e e s r e et e e e e e e e r e e e e e e e e e nneeees 61

Introduction

The purpose of this project is to get a better understanding of developing applications for
the ARCX Inc Logic Controllers. This document discusses developing Web Automation Toolkit
(WAT) applications on your local machine, staging and debugging the application locally and
finally deploying the application to a target ARCX Device. WAT is an APl and series of
development languages using HTML5, JavaScript and CSS3.

Demo the Game

Start by running a sample of the game in our local browser. It is recommended to use
Google Chrome Browser.

Enter the following URL (this code is adapted to work on a computer, not on the UP3K)
https://support.arcx.com/demos/Spacelnvaders/Spacelnvaders.html

In playing the game one gets a feel for all the moving parts. Notice the following;
e Movement and pattern of the aliens and the player

the breaking of the barriers increases the score
e the death of each alien does not affect the next, even though they all move together

e the bullets starting at the player or alien become their own object and flying away
from the player or alien

e how the player ship breaks when it dies, the aliens explode, and the barriers erode

e smaller details, such as how a bullet will pass through an exploding alien but still
stop at an eroding barrier.

Once an understanding of the game is gained, the source code will be much easier to understand.

Development Environment

Next, set up the components needed to code the application.

Install a text editor. Notepad++ is recommended:
https://notepad-plus-plus.org/download/v7.5.7.html

Windows Notepad can be used, but without context highlighting, it is more difficult to find
syntax errors. Other web development source code editors can be used and left as an exercise
to the reader.

Once the editor is open, HTML is used to set up the framework for a webpage. The
following is how you make a page with the text “HELLO WORLD” displayed.

Note: <html> is called an html tag. </html> is called a closing tag. This works for any
contents of the tag. <p></p>, <body></body>, <script></script>, etc.

Lj’ D:\JSTEST\SamplePage.html - Notepad++

File Edit Search View Encoding Language Settings Tools Macro Run
TCOHREEGR| Bk o ay aax| BR|:
|=| SamplePage html E3 |

1 <IDOCTYPE html>
2 ithtmlp

<head
[T <title>My sample page</title4
</head>
<body>
<p>Hello world!</p>
</body>
L</html>

Figure 1

Save the text document as "SamplePage.html". This will tell the computer that it is an html
file, and not a standard text file. After saving this, the tags will be highlighted. Now, open the saved
file, and it will open a web page with the desired text.

O @

Hello world!

Figure 2

There is more function to a webpage than plain text, so a more complete framework would
look like this:

Note: “//” means the code is commented out. This is used to describe code, but the
commented does not actually run.

<html> //starts the html page
<head> //header, this does not show up but affects the body
<title>
My Sample Page
</title>
<style> //starts CSS, affecting how the page is displayed
</style> //closes the CSS
</head> //closes the header
<body> //this is where html code goes
<p>
HELLO WORLD
</p>
</body> //ends where html code goes
<script> //starts where javascript goes
</script> //ends where javascript goes
</html> //ends the html page

This page would output the same thing; it just includes the ability for CSS and JavaScript
to be added to the code.

Almost all the code written for this game is in JavaScript (between the script tags), but
there are some details written outside. HTML is like a framework; It sets up the structure for the
rest of the code, and provides the basic resources to work with. CSS goes farther, allowing styling
and more dynamic visuals to the page. It allows the programmer to directly interact with what
appears on the page and change its appearance. JavaScript allows further function of the page.
With it, the user is able to access more data in more interactive ways.

Write the complete framework notepad++ and save the text document as
"Spacelnvaders.html".

Server Hosting

Why you need to host the application:

This project hosts a server using both Internet Information Services and FLEXframe.
Hosting servers allows multiple users to access the program from different machines, as well as
allows easier testing for code. They also allow deployment where users can run the code on
several different types of machines (computer vs. UPPK) from the same place.

Internet Information Services

The first way to execute the code is through Internet Information Services. This runs
through windows and is quick and simple to set up locally with no prior knowledge.

To set up IS, go to the control panel. Click on “programs”, click on “programs and
features”, and from there find “Turn Windows features on or off.” From here, turn on Web
Management Tools and World Wide Web Services. The computer may need to reboot to complete
this process.

Turn Windows features on or off (2]

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

7 [J Hyper-Vv A
Internet Explorer 11
- [m] Internet Information Services
[FTP Server
- @] Web Management Tools
7 [] | IS 6 Management Compatibility
1IS Management Console
[] IS Management Scripts and Tools
[11SManagement Service
7 M | World Wide Web Services
[C] Internet Information Services Hostable Web Core

2.1 I enacy Comnonents

Figure 3

Now, if everything is set up correctly, a search for localhost in the browser, you should
display this:

Show what you type in chrome here

=& Windows

Internet Information Services

Welcome Bienvenue Tervetuloa

+3cz% Benvenuto #:0

‘ 5 ". Bienvenido Hos geldiniz | o'xan oo Welkom

Bem-vindo |)
KoAwg
Vitejte Oploarte Valkommen oxanosare | LUdvOZOljik

Lo XD

Microsoft

Figure 4

Now that this is active, go to IS manager. This can be done by searching for internet
information services in the windows search bar and checking for the manager. It should look like
this:

W Internet Information Senvces (II5) Manager - o x
5 S5, DESKTOP-LPIT4UE » TR -

File View Help

[

I ' eﬂ DESKTOP-LP174UB Home
> 5 DESKTOR-LPYFAJE (DESKTO Fifter: - % Go - g ShowAll | Groupby: Ares - -
s -

£] = ol b = 3 el g et

s 9 o B @E & & W = M ¢ =
Authentic_. Compression Defsuk Directory EmorPages Handler HITP Logging MIME Types Modules Output Request
Docurnent Browsng Mappings Respon.. Caching Filtering

& :a

Server Worker
Certificates Processes

Mansgement -

Configurat F!liure Shared
Editor Delegation Configurat

l¢ s | [E] Features View | i Content View

Ready h'|
Figure 5

On the right side, under manage server, start the server, and make sure to restart the
server whenever files are modified.

To run code on a server you will need to know/have:
e The computer’s IP Address
e Afile installed (hosted) on the server
The computer’s IP will be first. To get the computer’s IP, search cmd in the windows

search bar. It will open a log. Type ipconfig, press enter, and look for IPv4. This is the local IP that
will be used.

plpconTig

dindows IP Configuration

Ethernet adapter Ethernet:

Connection-specific DNS Suffix
Link-local IPv6 Address : fe

Figure 6

¢ In this example, the IP is 192.168.2.177. This may not match yours.

Now to run the chosen file, add it to the root folder, the default folder to be accessed when
IIS is accessed by the computer. To do this, look for the root folder within C:\inetpub\wwwroot

» ThisPC » Local Disk (C:) » inetpub

”

Jame

custerr
history
logs
temp

wwwroot

Figure 7

Place Spacelnvaders.html in this wwwroot folder.

Once complete, the file should look like this:

This PC > Local Disk (C:) » inetpub > wwwroot

~
Name

€ iisstart.htm
M| iisstart.png
€ Spacelnvaders.html

Figure 8

To run the code on the computer, search the computer’s ip followed by the file name like
this in the browser:

192.168.2.177

Figure 9

Note: Use of the word local refers to the development machine as opposed to the target
hardware device. If the file is being manipulated on the same machine as the server is being
hosted, the [P can be replaced with “localhost”. This would look like
“localhost/Spacelnvaders.html”

FlexFrame

This code uses FlexFrame version 1.2.1, this code may not be valid in all future updates.

Open the flexframe installer on your desktop and install the program. To run the program,
search for FlexFrame Command Prompt and open it. It will take you to this screen.

B FlexFrame Command Prompt L m] b

Figure 10

Now the directory must be pointed to the file you want to store your FlexFrame files. The
command cd is used, followed by a directory. This example uses a test file on the desktop.

BN FlexFrame Command Prompt = a X

Figure 11

Now the FlexFrame console is pointing to the desired folder. Next to create all the
initialization files necessary to run FlexFrame, use the command “flexframe config” and press
enter when prompted. This will create files called “FlexFrame.json” and “index.pug.”

B FlexFrame Command Prompt - m} X

Figure 12

After this, place the Spacelnvaders.html file in the folder being accessed, so it looks like
this:

» FlexFrameTestFolder v OO

Name Date modified /pe
| FlexFrame.json B/7/2018 1:21 PN JSON File 1 KE
index.pug B/7/2018 3:57 PN PUG File KB

€ Spacelnvaders.html 8/9/2018 2:59 PM _hrome HTML Do... 19 KE

Next, in the index.pug file, use notepad++ add a line to include Spacelnvaders.html in its
running operation.

[5’ C:\Users\spencerd\Desktop\FlexFrameTestFolder\index.pug - Notepad++
File Edit Search View Encoding Language Settings Tools Macro
o o s = = i XK

{index pug E3

Finally, in the flexframe command prompt, use the command flexframe to host a server
that runs the code in the index.pug file.

Figure 13

To access this server, similar to in 1S, the IP of the host machine is needed. Earlier it was
established the example IP is 192.168.2.177, The other information needed is the port the server
is hosted on, shown in the last line of the current FLEXframe command prompt. The default port
is 5000, and that is what this example shows. To run the code, serch for the host IP followed by
the port, like so:

® 192.168.2.177

Wiring the Joysticks

The wiring can be done in many configurations of inputs, but this is the wiring setup that
works with the provided code.

Figure 14

The joysticks connect to the inputs on the side below the screen. The wires from the
joysticks plug into a terminal block which then plugs into the UP3K itself. This is the end product.

Figure 15

This is the orientation the box should be in for wiring. The joysticks should be upside down
with the wires on the top left side towards the back.

Figure 16

These are the wires labelled 1 through 5, 1 being the common (or ground) wire, and the
rest representing a direction the joystick is held.

[1/

Figure 17

This shows the opposite end of each wire 1 through 5. Screw the wire into the desired port
of the terminal block, then plug the terminal blocks into the UP3K where it is labelled inputs as
shown in the first figure of this section.

When plugging in the terminal blocks, make sure the left joystick goes to the left inputs
(16-13) and the right joystick goes to the right inputs (12-9).

Powering the Box

There are two ways to power the box. One way uses the standard ports, and the other
uses power over Ethernet.

Standard Power

Connect the power cable to the UP3K

Figure 18

To UP3K

Figure 19

Connect the Ethernet cable to the UP3K and the network source.

To network source

ETHERNET FIELDBUS 1 FIELDE

Figure 20

Power Over Ethernet

Connect a POE (power over Ethernet) injector to the standard power source and the
network source, and then connect the POE line to the Ethernet port on the UP3K.

To power

. Power over

rnet, to UP3K

Figure 21

To POE injector

FiELDEY

Figure 22

Connecting the box to 1S

Connect the box to the internet, and power it up. The box will turn on.

<Add screen shot>

When this happens, click configuration once the option appears. From this screen, the
UP3K’s ip address will show, highlighted in red.

Configuration
URL: http://192.168.2.177/Spacelnvaders.html

IP Address:| 192.168.2.144 IP Settings...

Time: Mon Jul 23 13:57:52 2018 Time Settings...

(Z]options bﬂ

Hardware Screen Browser Versions
X Cancel &3Reboot v oK
Figure 23

Type the IP into a browser.

C | O 192.168.2.144

Figure 24

Now the website can be used to access to the box's functions. The code that the box
executes can be changed by putting the URL into the "Initial URL" box at the top, highlighted in
red.

WAT Web Administration

UEILY Network Screen Browser Hardware Plugins Firmware About

Welcome to WAT Web Administration. You can use this web application to configure your WAT device.

Startup Settings

|Initial URL: |http://192.168.2.177/Spacelnvaders.htm |
v Show Configuration on Startup
| Submit
Show Config Show the configuration dialog on the device
| Reboot | Reboot (power cycle) the device

Reloads the initial startup page on all applicable displays. Reboot (or full power cycle if
Reload
LRead | possible) is preferred for non-development devices.

Change Password | Changes the webadmin password

IP: 192.168.2.144 Model: AXM-UP3502-0001 ArcX Inc.

Figure 25

When the UP3K accesses the initial URL below, it is going to the IP address of the
computer, then in the root file, it is looking for the file “Spacelnvaders.html”, and it is running the
code in that file.

e Make sure the IP address in the ‘Initial URL’ box is the IP of the machine hosting the
server, not the box or a machine that is not related to this interaction.

Code

The rest of this document will explain the code. There will be references throughout that
lead to other sections of code. On digital copies, the references can be clicked on to move to the
referenced section, and on paper documents, a reference of (001) will be referencing the first
section of code which will be titled 001. Names for all variables and functions will be descriptive
of their function, so if it is understood what the function does as a whole, continue to understand
the current function instead of jumping around the code constantly.

001: HTML and CSS

<IDOCTYPE html>

= <html>
: <head>
<style>
body{
| border: Opx;
margin: 0px;
padding: Opx;
overflow: hidden;
- </style>
- </head>

] <body onload="startGame()">
| <canvas id="canvas"></canvas>
</body>

Figure 26

This is where the code starts, from lines 4 to 11, in the style tags, CSS is added, which
simply removes the scrollbar and whitespace. Border, margin, and padding being 0 pixels wide
ensures that everything made is exactly the expected dimensions. Turning off the overflow means
there are no scrollbars if the page takes up the whole screen.

e Inline 13, the onload function means that once the whole document has loaded, a function
called startGame is called. This sets initial conditions for the game and is described in
(Error! Reference source not found.).

e Online 14, a canvas in html is instantiated, and it is given an id of canvas so it can later
be called on in JavaScript.

002: Variable Declaration

16 B <script>

17 //initializing all the variables used in the game
18 var canvas = document.getElementByld("canvas");
19 var ctx = canvas.getContext("2d");
20 var hw = Swat.load('hw")[0];
21 canvas.width = 800;

22 canvas.height = 490;

23 var now,

24 var rand;

25 var player;

26 var pressedButtons = [J;

27 var pixelSize = 5;

28 var bulletArray;

29 var bulletHeight = pixelSize*2;
30 var bulletCounter = 0;

31 var bulletSpeed = 6;

32 var lastShot = 0;

33 var playerFireTime = 850;

34 var offset = 60;

35 var alienCount = 0;

36 var alienArray;

37 var alienwidth = pixelSize*11;
38 var alienHeight = pixelSize*8;
39 var alienSpeed = 1.2;

40 var spriteNum;

41 var xAliens = 8;

42 var yAliens = 5;

43 var alienBulletCounter=0;

44 var alienBulletArray;

45 var alienLastShot = 0;

46 var alienFireTime = 1000;

47 var barrierArray=[J;

48 var edgeContact = 0;

49 var direction = 1;

50 var level = 1;

51 var score = Q;
Figure 27

This section initializes global variables used in the program. This is done to facilitate easier
to read code. Variables are named accurately, and reading this will give understanding of some
of the variables used later.

There are 5 lines that are currently vital, lines 18 to 22:

Line 18 creates a JavaScript variable of the html canvas from (Error! Reference source
not found.) line 14. This can now be called on easily

Line 19 gets the canvas’ context, which allows drawing and renders it in 2D.

Line 21 and 22 set the width and height of the canvas, which is set to the dimensions of
the UP3K screen.

Line 20 is related directly to the UP3K that the program runs on. It imports the hardware
so the different inputs for the controller can be accessed.

003: Movement Variables

53 ’ i //Movement based variables

54 | var movementTimer = null;
55 i var spriteAnimation = null;
56 i var alienJumpDown = 11;

Figure 28

These variables, as line 53 suggests, are movement based.

e Lines 54 and 55 set up variables for timers that are defined later in (

007). These will call on certain functions on consistent time intervals when they are
defines.

Line 56 defines how much the aliens move down the screen when they contact the edges
in (Error! Reference source not found.).

004: Sprite Arrays

58 //arrays of all the sprites used, 1 means it will be a white square, 0 means it will be black
59 var playerSprite1 = [
60 [0,0,0,1,0,0,0],

61 [0,0,1,1,1,0,0],

62 [1,1,1,1,1,1,1)

63]

64 var playerSprite2 = [
65 [0,0,0,1,0,0,0],

66 [0,0,1,0,1,0,0),

67 [1,0,1,1,0,1,0]

68]

69 var bulletSprite = [

70 (1.

71 M1

72]

73 var alien11 = [

74 [0,0,1,0,0,1,0,0,1,0,0],
75 [0,0,0,1,0,0,0,1,0,0,0],
76 [0,0,1,1,1,1,1,1,1,00],
77 [0,1,1,0,1,1,1,0,1,1,0,
78 ALLLL L1110
79 HOLA1 11500,
80 [1,0,1,0,0,0,0,0,1,0,1],
81 [0,0,0,1,1,0,1,1,0,0,0]
82]

83 var alien21 = |

34 [0,0,1,0,0,1,0,0,1,0,0],
85 [0,0,0,1,1,1,1,1,0,0,0,
86 [0,0,1,1,0,1,0,1,1,0,0,
87 [0,0,1,1,0,1,0,1,1,0,0],
88 [0,0,0,1,1,1,1,1,0,0,0],
g9 [0,0,1,0,1,1,1,0,1,0,0],
920 [(0,0,1,0,0,0,0,0,1,0,0],
91 [0,0,0,1,1,0,1,1,0,0,0]
92]

93 var alien31 = [

94 [0,0,0,1,1,1,1,1,0,0,0],
95 [0,0,1,1,1,1,1,1,1,0,0,
96 [0,1,0,0,1,1,1,0,0,1,0],
97 [0,1,0,0,1,1,1,0,0,1,0),
98 [0,1,1,1,1,0,1,1,1,1,0,
99 [0,0,1,1,1,1,1,1,1,0,0],
100 [0,0,0,1,1,0,1,1,0,0,0],
101 [0,0,0,1,1,0,1,1,0,0,0]
102]

103
104
105
106
107
108
109
110
111
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

var alien12 = [

(0,1,1,0,0,1,0,0,1,1,0],
[0,0,0,1,0,0,0,1,0,0,0],
[1,0,1,1,1,1,1,1,1,0,1,
[1,1,1,0,1,1,1,0,1,1,1],
% Vs o P b 0% % MR I T I o
[0,0,1,1,1,1,1,1,1,0,0),
[0,1,0,0,0,0,0,0,0,1,0],
[0,0,1,1,0,0,0,1,1,0,0]
]
var alien22 = [

[0,0,0,0,0,1,0,0,0,0,0],
[0,1,0,1,1,1,1,1,0,1,0),
[0,0,1,1,0,1,0,1,1,0,0],
[0,0,1,1,0,1,0,1,1,0,0},
[0,0,0,1,1,1,1,1,0,0,0],
[0,1,1,0,1,1,1,0,1,1,0],
[0,1,0,0,0,0,0,0,0,1,0],
[0,0,1,0,0,0,0,0,1,0,0]

1
var alien32 = [

[0,0,1,1,1,1,1,1,1,0,0],
[0,1,1,1,1,1,1,1,1,1,0,
[0,1,0,0,1,1,1,0,0,1,0],
[0,1,0,0,1,1,1,0,0,1,0],
[0,1,1,1,1,0,1,1,1,1,0],
[0,0,1,1,1,1,1,1,1,0,0,
[0,0,1,1,0,0,0,1,1,0,0],
[0,0,0,1,0,0,0,1,0,0,0]
]
var deadAlien1 = [

[0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1,0,0,0,1,0,0,0],
[0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,0,1,1,1,0,0,0,0,
[0,0,0,1,1,1,1,1,0,0,0],
[0,0,0,0,1,0,1,0,0,0,0],
[0,0,0,1,0,1,0,1,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0]
]
var deadAlien2 = [

[0,0,0,0,0,1,0,0,0,0,0],
[0,1,0,1,1,0,1,1,0,1,0,
[0,0,1,1,0,0,0,1,1,0,0],
[1,0,0,0,0,0,0,0,0,0,1],
[0,0,1,0,0,0,0,0,1,0,0],
[0,0,1,1,1,0,1,1,1,0,0],
[0,0,0,1,0,0,0,1,0,0,0],
[0,0,1,0,0,1,0,0,1,0,0]

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

var barrierSprite1 = [

]

]

]

]

]

[0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,00,0],
[0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,00,0],
(0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,10],
[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0]
i e Ve R O T R PRt T T Pl P O
LLLLLLL L L LA L),
1.1,11,1.11100011.1.1.1.1.1.1]

var barrierSprite2 = [

[0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0],
[0,00,1,1,1,1,1,111,1,1,01,1,0,0,0
0,1,1,1,1,1,1,1,1,1,1,1,001,1,1,1,0],
0,1,1,1,1,1,1,1,1,1,1,1,1,1,01,1,1,0],
ELLLLOL LT L L1111
11100100 L R LR R,
(1,1,11,01,1,1,0,0,01,1,1,1,1,1,1,1]

var barrierSprite3 = [

[0,0,0,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0
[0,0,0,1,1,1,0,01,1,1,1,1,0,1,1,0,0,0],
[0,1,1,1,1,1,1,0,1,1,1,10,001,1,1,0]
[0,1,1,1,111,11,1,1,1,1,10,1,11,0]
(1,1,1,1,1,01,1,1,001,1,1,1,011,1],
[1.11,1,00111,0111111,11.1],
(1,1,1,1,01,1,1,0001,1,1,1,1,11,1]

var barrierSprite4 = [

[0,0,0,0,0,1,0,1,1,0,0,1,1,0,0,0,0,0,0],
[0,0,0,1,1,1,0,01,1,1,1,1,0,1,1,0,0,0],
[0,0,1,1,1,1,1,01,1,1,1,001,1,1,1,0]
[0,0,0,0,1,1,1,1,1,1,0,1,1,1,0,1,0,0,0},
(1,1,1,1,1,0,1,1,1001,1,1,1,1,1,1,1],
(1,0,1,1,0,0,1,1,0,0,1,1,1,1,1,0,01,1],
[0,0,0,1,0,1,1,1,000,1,1,1,001,0,1

var barrierSpriteS = [

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0],
[0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,1,0,0],
[0,0,0,0,1,1,1,0,1,0,0,1,0,1,0,1,0,0,0],
[0,1,1,0,1,0,1,1,1,00,1,0,1,1,1,1,0,0,
[0,0,1,1,0,0,0,1,0,0,1,1,1,0,1,0,0,1,0],
[0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,0,1,0,0]

var barrierSprite6 = [

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0},
[0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0],
[0,0,0,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,0],
[0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0],
[0,0,1,0,0,0,1,00,0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0]

Figure 29

This group of code is all sprites, made manually.

var barrierSprite1 = [

(0,0,00,01,1,1,11,1,1,1,1,0,0,0,0,0],
[0,0,0,1,1,11,1,1,1,1,1,1,1,1,1,0,0,0],
01111111111111,1,1,1,1,0],
[011111,1,1,1,1,1,1,1,1,1,1,1,1,0],
11.111.111.1.1.1.1.1.1,1,1.1,1.1),
11.111.11.1,11.1.1,1.1,1,1,1,1,1),
(1,111,11,1,1,0001,1,1,11,1,1.1]

]
Figure 30

This is barrier1, the default state of a barrier, with all of the 1s highlighted. This is an array
of arrays, that is, vertically; there are 7 arrays, each containing 19 horizontal values, creating a
grid that can be used for a 2d shape. The 1s define the shape of the barrier, and the Os define
where the barrier is not. In drawSprites at (Error! Reference source not found.), there will be
more detail about how it works, but essentially, all the Os will be a 5x5 pixel square (as determined
by pixelSize defined in (Error! Reference source not found.)), and all the 1s will be a 5x5 pixel
square coloured white.

005: Objects

208 g //objects, defines the player, bullets, aliens, and barriers
209 function Player(x,y){

21C this.sprite=playerSprite1;

211 this.x=0;

212 this.y=canvas.height-32;

213 this.width=pixelSize*7;

2 this.height=pixelSize*3;

215 this.speed = 4.5;

216 }

2 = function Bullet(x,y){

218 this.x=x;

219 this.y=y;

220 this.width=pixelSize;
221 this.height=pixelSize*2;
222 . }

J
S

n oh w

=] function Alien(x,y,size,sprite, spriteld){
225 | thisx = x;

22 thisy = y;

227 this.size = size;

228 this.sprite = sprite;

229 this.spriteld=spriteld;

230 this.width=pixelSize*7;

231 this.height=pixelSize*5;

232 this.alive=true;

233 }
234 [& function Barrier(xy){

235 this.x=x;

236 this.y=y,

23 this.sprite=barrierSprite1;
238 this.spriteld = 1;

239 this.width=pixelSize*19;
240 this.height=pixelSize*7;

Figure 31

This code defines objects for all the elements of the game. The objects contain all of the
vital information in one grouping. This makes two steps easier: now there isn’t a clutter of variables
called playerSpeed, playerSprite, playerXCoordinate, etc, and objects can be called on with
player.attribute*. This helps keep the code clean and readable.

Another purpose of this is when there are many similar objects with only a few differing
properties (like position). The variables x and y defined in all of these objects are the coordinates
of the top left corner of the object (the object will later be drawn using a sprite assigned from
(Error! Reference source not found.)), and using objects like this there can be a list of aliens
that all hold the same features but have differing coordinates. These are assigned by defining

them either in the object function or passing them through. The keyword “this” defines an object
attribute. More on spriteld and sizes in (Error! Reference source not found.).

The player x and y are set to 0, meaning that the player starts at the left side of the screen,
and canvas.height-32, starting the player 32 pixels from the bottom

006: Start Game

245 é] //puts the game in a starting position. Canvas is defined and all basic elements are placed
246 [function startGame(){
247 alienArray = [I;
48 alienCount = 0;
249 bulletarray = [J;
250 alienBulletArray = [J;
251 barrierArray = [J;
252 cbx fillStyle="#000000";
253 ctx fillRect(0,0,canvas.width,canvas.height);
254 ctx fillStyle="#FFFFFF";
255 player = new Player();
256 drawSprite(player.sprite, player.x player.y,pixelSize);
257 [for(var i =0ji<yAliens;i++){
258 E for(var k = O;k<xAliens;k++){
259 = if(i==0){
260 sprite = alien31;
261 spriteNum = 31;
262 - }
263 O else if(i==1 || i==2){
264 sprite = alien21;
265 spriteNum = 21;
266 B }
267 else if(i==3 || i==4 || i==5){
268 sprite = alien11;
269 spriteNum = 11;
270 | }
271 alienArray[alienCount] = new Alien(k*offset,i*offset, 3,sprite, spriteNum);
272 alienCount++;
273 » }
274 }
275 [© for(i=0;i<4;i++){
276 barrierArray.push(new Barrier(canvas.width*.2*(i+1)-pixelSize*12, canvas.height*0.86));
277 drawSprite(barrierArray(il.sprite,barrierArray(i].x, barrierArray[il.y,pixelSize);
278 }
279 drawAliens();
280 startTimers();
281 - }
282
Figure 32

startGame sets up all the initial conditions.

o Line 247 and 248: an empty array is initialized that will later be filled with alien objects
from (005), but there are no aliens yet.

e 251 and 252 do the same for bullets, and 253 does the same for barriers. These variables
are initialized and will be filled farther down.

e Line 252 and 253: Fills the entire canvas black, which is in this case, is the entire screen.
This makes the background of the game black.

e Lines 254 to 256 make the drawing white, create a player, and then draw the sprite of the
player using drawSprite (024). This starts the player in the bottom left corner as described
at the end of (006).

e Lines 257 to 274 create all the initial aliens. The resulting array of aliens will be a 1D array,
but all the aliens require different x and y coordinates.

yAliens was defined in (002) as the number of aliens that appear vertically, and xAliens is
defined to be the number of aliens that appear horizontally. There are two nested for loops, i going
through yAliens, and k going through xAliens. This is to say, for all i rows of aliens, there are k
aliens per row. Depending on the i value, meaning what row it is in, a sprite is assigned, which is
why aliens at different heights have different sprites.

With the nature of the array incrementing by 1, all aliens will be 1 pixel away from each
other, so the coordinate is multiplied by an offset, which creates a space between all the aliens.
Now the aliens can be created. The aliens are assigned the x and y coordinates made with k*offset
and i*offset, give it a size of 3 (the overall size of the alien sprite). The alien is assigned a sprite,
and assigned a sprite number so the sprite can be changed in (022).

e Line 272 increments to keep track of the number of aliens present. This is needed because
the game is won when there are 0 aliens.

k

offset

*The squares would be replaced with sprites defined in (004)

e Lines 275 to 278 create barriers. For all four barriers, line 276 pushes (adds) a barrier to
an array and places it evenly spaced across the screen.

e Line 277 draws the barrier on to the canvas using drawSprite (024).

e The function ends by drawing the aliens (017) and starting the timers to run the game
(003).

007: Starting and Stopping Timers

= function startTimers({

movementTimer = setinterval(runGame, 3);
spriteAnimation = setinterval(changeSprites, 500);
function stopTimers(){
clearinterval(movementTimer);
movementTimer = undefined;
clearinterval(spriteAnimation);
spriteanimation = undefined;

Figure 33

This will have two parts, the timers, and the running of the game. First addressed is the
timers. The format of a timer is fairly simple:

e Create a variable, and then inside the parentheses, give a function and a time.
e For movement timer, the time is 3 milliseconds, and the function is runGame.

This means that every 3 milliseconds, runGame will execute. spriteAnimation means that
every 500 milliseconds, or half second, changeSprites (022) will run. stopTimers takes these
timers, and clears them, and sets them to undefined. The interval is cleared after the player wins
or loses so that everything pauses in its place (020).

//runs all game function
function runGame(){
2 resetCanvas();
288 I updateDisplay(;
288 : movePlayer();

[' moveAliens();

: drawBarriers();

292 | moveBullets();
7 | checkEndGame();

This leads to runGame, which runs every 3 milliseconds when the game is running. This
refers to each function in order to put everything in place.

e Reset canvas: (008)
e Update display: (008)
e Move player: (009)

e Move aliens: (012)

o Draw barriers: (017)
e Move bullets: (018)

e Check endgame: (019)

008: Background Display

296 l //clears the canvas and sets it black (ie the background)
297 = function resetCanvas(){
| ctxclearRect(0,0,canvas.width,canvas.height);

: i ctxfillStyle="#000000";
cbefillRect(0,0,canvas.width,canvas.height)

1
i

//updates all Ul items
= function updateDisplay({
i ctxfont = "13px Arial";
cbetextAlign = "left”;
ctx fillStyle = "#FFFFFF";
cocfillText("Level: " + level + " Score: " + score,0,10);

Figure 34

resetCanvas is similar to (006) lines 254 and 255, but with one extra step.
e Line 298 clears the canvas, getting rid of everything on it, leaving it blank white.
e Line 299 sets the colour of our next drawing to be black
e Line 300 fills the entire screen black.
updateDisplay is the small text in the upper left that shows what level the player is on and
what the score is. The font is set to size 13 Arial. The text is set to show up on the left, and it is

set to be filled in with the colour white. After this, text is written in displaying the level and score 0
pixels from the left side and 10 pixels from the top.

009: Player Movement

J' //all interactions involving player input
= function movePlayer(){
findPressedButtons();
findUnpressedButtons();
= if(pressedButtons[D] == "1
i shoot(;
= if(pressedButtons[1] == 1 && player.x >= 0){
i player.x-=player.speed;
= else if(pressedButtons[2] == 1 && player.x + playerwidth <= canvas.width){
322 . player.x+=player.speed;
324 cbefillStyle="#FFFFFF";
- drawSprite(player.sprite, player.x player.y,pixelSize);

Figure 35

This function handles all the player's movement

e Lines 313 and 314 will be handled in (010)
o0 After these, it is assumed that the joystick is being held actively
o Ifitis being held up, the player shoots. More detail on this in (011)

o |If the joystick is being held left, and the player is not yet at the left edge of the
screen, the player moves to the left by the player’s speed, which was declared in
(005)

o If the joystick is being held to the right and the right side of the player is to the left
of the right side of the screen, the player moves to the right by that same speed.

After this the drawing colour is set to white, and in line 325 the player is drawn onto the
canvas where its new coordinates are. Keep in mind that at the time of this happening, the canvas
has just been set black and drawn the score in the top left only. The last position of the player has
been cleared, so only its new position is seen.

010: Finding Pressed Buttons

' ¥
(THT}

L ¥

Figure 36

These two functions could be merged into one with the UP3K, but this is more closely
related to how it would be done on a keyboard. Since in (002) line 20 the UP3K hardware was
imported, digital inputs can be accessed. First check what input the controller is plugged into, and
subtract 1, since JavaScript is zero based. From that point check that input’s state, and if it is true,
then that means the controller is triggering that input. The three inputs the controller is using are
checked to see if they are active, and if they are, it sets the index of pressedButtons to 1. In
findUnpressedButtons, inactive buttons are found, and the same indexes are set to 0. This means
that later, the array holds all the information of pressed and unpressed buttons, and no further

//activates buttons on key press
function findPressedButtons(){
jf(hw.digInputs[10].state == true){
i pressedButtons[0] = 1;

}

@f(hw.dig|nputs[8].state == true){
i pressedButtons[1] = 1;
!'f(hw.digInputs[g].state == true){
. pressedButtons[2] = 1;

}

}

//deactivates buttons on key unpress
function findUnpressedButtons(){
if(thw.diginputs[10].state == false){
| pressedButtons[0] = 0;

i

if(hw.diginputs[8].state == false){
| pressedButtons[1] = 0;
if(hw.diginputs[9].state == false){
| pressedButtons[2] = 0;

}

checks are required.

e Index 0 is shooting, index 1 is moving left, and index 2 is moving right.

011: Shoot Function

function shoot({

now = new Date();

now = now.getTime();

if(now > lastShot + playerFireTime){

| bulletArray[bulletCounter%20] = new Bullet(player.x+pixelSize*3,player.y);
bulletCounter++;

lastShot = now;

Figure 37

As defined in (009) line 316, if the joystick is held in the upward position this function will
run. First it gets the current date, and the next line converts that date into time in milliseconds. In
(006) line 250, the fire timer for players is set, that is, how long the player has to wait to shoot
again. The last shot either never occurred, where it would be 0, or is the time in milliseconds of
the previous shot. If must be determined if the current time, in milliseconds, is higher than the
time of the last shot in seconds plus the time it takes for the player to fire. If it is not, the program
will do nothing.

If it is larger, the player will shoot a bullet. First there is a bullet counter, which is the total
number of bullets shot since the start of the level. There is an array of bullet objects, and when
the player shoots, a bullet is added to that array at the index of the number of bullets that have
been shot, starting back at 0, every 20 shots to save memory. The bullet is created at the position
of the horizontal center of the player, and at the player’s height. After this, the time of the previous
shot to the time of this shot, to make sure another shot doesn’t happen until the fire time is up.

012: Alien Movement

362 I //handles alien movement

=) function moveAliens(){

' checkForHits();

alienShoot(;

//bounces the aliens off the edges

for(i=0;i<alienArray.length;i++){

if(alienArray[i].x+alienWidth-25 >= canvas.width && alienArray(i).alive==true){
direction = -1;

edgeContact=1;

!
else if(alienArray(i]x <= 0 && alienArrayli].alive==true){
direction = 1;

edgeContact=1;

}
}
alienSpeed = direction*Math.abs(level/3+0.6+2/alienCount)*3;
//moves the aliens down if they have contact with an edge
for(i=0;i<alienArray.length;i+ +){
| alienArray[i).x+=alienSpeed;
if(edgeContact==1 && alienArray(i].alive==true){
i alienArray[il.y+=alienJumpDown;
)
}
//alien speed at certain intervals and draws them onto the canvas
edgeContact=0;
drawAliens();

r
T e e By Ty B

388 ; }
Figure 38

The function moveAliens covers all movement covered with aliens, and all object
interaction. Line 364 and 365 will be covered in (013) and (016), but essentially checkForHits
handles all objects coming in contact with each other. This includes bullets, barriers, and aliens.
alienShoot is the function that covers the aliens shooting back at the player.

Line 367 to 376 handle contact with the edges. The for loop on 367 checks all the aliens,
and the if statement on 368 says that if an alien hits the right side of the screen, and the alien is
alive (not undergoing its death animation), the direction is made negative and edgeContact states
that there has been contact with an edge. The other statement on 372 says that if an alien has hit
the left side of the screen and is alive (not undergoing its death animation), the direction it travels
is made positive and edgeContact states that there has been contact with an edge. After this the
speed is determined by the following equation:

level 2
+06+———m)%3;

direction * Math. abs(3 alienCount)

e Thedirection, based on the last wall hit, is multiplied by the absolute value so that no other
variables can ever have an effect on this.

o Level /3 makes the speed get somewhat faster every level.
e 0.6 is a base speed that is added to make the game always fun, not dead slow on level 1

e And 2/alienCount means that as aliens die, the remaining aliens will speed up, starting
small, and getting very fast at the end.

The code from Lines 379 to 384 moves the aliens. The for-loop scrolls through all the
aliens and moves them horizontally by the defined speed. After this, if one of the previous
statements says that there is contact with the edge, the aliens move down by a distance defined
in (002).

Now edgeContact is reset to 0. This means that it will be 0 until another alien next hits an
edge, and means that aliens don’t keep moving down forever once they touch an edge once. Now
the aliens are drawn in their position, further discussed in (017).

013: Hit Registration

380 [function checkForHits(){

390 //resolves all contact with aliens

391 [if(bulletArray.length > 0){

302 & for(i=0;i<alienArray.length;i+ +){

303 [for(j=0;j<bulletArray.length;j+ +){

394 [if(collides(alienArray(i] bulletArray(j]) && alienArrayfi].alive==true){
395 addScore(alienArrayli]);

396 alienArray([i].sprite=deadAlien1;
397 alienArrayfi].spriteld=1;

308 alienArrayfi).alive=false;

399 bulletArray.splice(),1);

400 alienCount--;

401 break;

402 }

403 B }

404 | }

405 = }

406 //resolves all contact with barriers

407 [for(i=0;i<barrierArray.length;i++){

408 [% for(j=0;<alienArray.length;j++){

409 [if(collides(barrierArray[i],alienArray(j])){
410 | barrierArray.splice(i,1);

411 | break;

412 - }

413 | }

414 [for(j=0;j<bulletArray.length;j+ +){

415 % if(collides(barrierArray(i],bulletArray(j)){
416 | barrierArrayli] = decayBarrier(barrierArray{i));
417 | bulletArray.splice(j,1);

418 i break;

419 }

420 = }

421 E for(j=0;j<alienBulletArray.length;j+ +){

422 [if(barrierArrayfi)!=null&&collides(barrierArray(i],alienBulletArray(j)){
423 ; barrierArray[i] = decayBarrier(barrierArrayli]);
424 i alienBulletArray.splice(j,1);

425 | break;

426 - }

427 }

428 r }

429 P }

Figure 39

Line 390 makes sure there are bullets, because if there aren’t, looping through the array
of bullets would throw an error.

e Lines 392 and 393: for each alien, check all of the bullets

e Line 394, if they collide (023), the function handles how the objects are supposed to
interact.

First the score for the aliens is added, which will be further described in (014). The alien’s
sprite is set to the start of its death animation, and its spriteld is set to 1. After this, alive is set to
false, meaning the bullet can’t collide with the alien again, and a dead alien wont trigger all the
aliens to switch directions. Then splice the bullet array, which removes the bullet from that
position, so the bullet stops existing on contact with an alien. After, the number of aliens in
alienCount is decreased, then the loop is exited.

Next, check everything that involves barriers, which have lots of interaction. For every
barrier, each alien is checked, making the barrier disappear if it contacts an alien. After this, each
bullet is checked. If it contacts the barrier, the barrier breaks a bit (015), and the bullet disappears.
Next check each alien bullet (016), and it interacts with the barrier in the same way a player bullet
does.

014: Score Handling

= function addScore(deadAlien){
var levelAdd = level*5;

if(deadAlien.spriteld == 31 || deadAlien.spriteld == 32){
! score+=25+levelAdd:

1
g

else if(deadAlien.spriteld == 21 || deadAlien.spriteld == 22){
i score+=15+levelAdd;

1
4

else if(deadAlien.spriteld == 11 || deadAlien.spriteld == 12){
! score+=5+levelAdd:

1
§
¥

441 - }

Figure 40

Since a simple comparison between sprites is not possible, a spriteld is assigned to track
what sprite each object has using an integer.

This function is started by knowing an alien is dead and which alien it is. The program
takes this alien, checks its spriteld, and based on that, adds a certain number to the score.

Additionally, as a reward to players for making it to higher levels where the aliens are harder to
kill, additional points are added based on the level the player is at.

Aliens with spriteld of 31 or 32 are the top level, and will earn most points. Aliens with a
spriteld of 11 or 12 are the lowest aliens, and will give the lowest score.

015: Barrier Decay

442 //decays barriers based on life

443 é function decayBarrier(barrier){

444 [= switch(barrier.spriteld){

445 case 1

446 barrier.sprite = barrierSprite2;
447 barrier.spriteld=2;

448 break;

449 case 2:

450 barrier.sprite = barrierSprite3;
451 barrier.spriteld=3;

452 break;

453 case 3:

454 barrier.sprite = barrierSprite4;
455 barrier.spriteld=4;

456 break;

457 case 4

458 barrier.sprite = barrierSpriteS;
459 barrier.spriteld=5;

460 break;

461 | }

462 return barrier;

463 - }

Figure 41

If a bullet hits a barrier, the barrier will be passed into the function decayBarrier. The
object’s spriteld will be determined and increased by 1. The sprite is then set to the next sprite,
defined in (004), and the barrier will appear more eroded.

016: Alien Shooting

//makes aliens shoot every second

function alienShoot({

rand = Math.floor(Math.random(= (alienArray.length));
now = new Date();

now = now.getTime();

if(now > alienLastShot+ alienFireTime){

alienLastShot = now;
for(i=0;i<alienArray.length;i++){

| ifi==rand){
alienBulletArray[alienBulletCounter9:20] = new Bullet(alienArray[i].x+alienArray[i].width,alienArray{il.y);
alienBulletCounter++;

This function is very similar to shoot at (011). The only difference is that instead of
defaulting the bullet to the player’s position, it picks a random number between 0 and the number
of aliens, then makes the alien at that index shoot a bullet. The value is stored in alienBulletarray
instead of the regular bulletArray. The difference comes in moveBullets in (018).

017: Drawing Aliens and Barriers

479 | //draws an array of aliens based on their position in a grid
480 = function drawAliens({
481 ctx fillStyle="#FFFFFF";
482 if(alienArray.length>0){
483 for(var i = Oji<alienArray.length;i++){
484 [| iftalienArrayfi)!=null){
485 i | drawSprite(alienArrayli).sprite,alienArrayli).x, alienArray(i).y,alienArray(i).size);
486 - P}
487 P
3 B }
480 | }

'

function drawBarriers(){
if(barrierArray.length>0){
i for(i=0ji<barrierArray.length;i++){
| if(barrierArrayfi]!=null){
: drawSprite(barrierArray[i].sprite,barrierArray(i].x,barrierArray[il.y,pixelSize);

P

O O O O

B W M

P

{THTHTHT]

o 4
O O

i
] & W
T

}

]
w]
1
e

4
T
-

w -
Qo O O
QWO o
|
f—

Figure 43

Functions drawAliens and drawBarriers are near identical, spare the fact that one deals
with an array of aliens, and the other an array of barriers. They check if there are any aliens or
barriers, because if there aren’t, there is no point in executing the rest. They check all the aliens
and barriers, and if the position in each array isn’t empty, it will draw the sprite (024) of the object
in its location.

018: Bullet Movement

W

//moves player and alien bullets
function moveBullets(){
//player bullets
if(bulletArray.length>0){
for(i=0; i<bulletCounter;i++){
if(bulletArray(i)!=null){
i | bulletArray(il.y-=bulletSpeed;
08 L ctfillStyle="#FFFFFF";
P drawSprite(bulletSprite bulletArray[il.x, bulletArray[il.y,pixelSize,pixelSize);

1 T }

‘: = }
- //alien bullets

if(alienBulletArray.length>0){

for(i=0; i<alienBulletArray.length;i++){

| if(alienBulletArray(i)!=null){

i | alienBulletArray(il.y+=bulletSpeed*0.7;

18 1 ctfillStyle="#FFFFFF";
9 i drawSprite(bulletSprite,alienBulletArray[i] x alienBulletArray[il.y, pixelSize, pixelSize);

L LnnocnenLnnononoLunoonoLn
. A === Lo A - 4

wn

1
(HIHD

WhoLhoLnoL U

520 - -

wLnoLnoWLn
r
i
-

23 - }
Figure 44

Function moveBullets deals with bullets shot by the player and from aliens. First, the
function addresses bullets shot by the player, so, all indexes of bulletArray are checked. For all
that contain a bullet, the bullet is moved up by a speed assigned in (002), and its sprite is drawn.
(024)

After this the same process occurs for alien bullets. All indexes of alienbulletArray are
checked, and for all that contain a bullet, the bullet moves down by 70% of the player’s bullet
speed, and their sprite is drawn (024).

019: Endgame Conditions

J'_ //checks for conditions of victory and loss

function checkEndGame(){
530 [//if all aliens are dead

1 H if(alienCount == 0){
32 | winGame();
£33 L |
534 //if the player is dead
535 for(i=0;i<alienArray.length;i+ +){
if(collides(player, alienArray[i]) || alienArray[il.y+alienArray[il.height > canvas.height){
I loseGame();
break;

{TH1}

520 1
541 [H for(i=0;i<alienBulletArray.length;i++){

542 [if(alienBulletArray[i] != null && collides(alienBulletArray(i],player)){
543 | loseGame();

544 | break:

547 B }
Figure 45

Function checkEndGame tests the conditions for win or loss. The condition for winning the
level is that all the aliens are dead, so if the count of aliens is 0, the player has won, and can start
the next level(020).

There are three ways for the player to die: the aliens hit the player, the player gets hit by
a bullet, and the aliens reach the bottom of the screen.
Line 535 tells if the player has been hit by an alien. It checks if any alien hits the player (023), and
if this happens, it runs the loseGame function (020).

In the same way, it checks if any of the alien’s bullets hit the player, and if this happens, it
runs the losegame function (020).

020: Winning and Losing

548 [I] //continue on to the next round showing the round and score if the player kills all the aliens
549 [function winGame(){

550 clearinterval(movementTimer);

551 clearinterval(spriteAnimation);

552 score+=200;

553 playerFireTime-=85;

554 alienFireTime-=75;

555 level++;

556 ctx.font = "50px Arial";

557 ctetextAlign = "center”;

558 ctx fillStyle = "#FFD700";

559 ctxfillText("Level: " + level, canvas.width/2, canvas.height/3);
560 ctx fillStyle = "#000000";

561 ctxstrokeText("Level: " + level, canvas.width/2, canvas.height/3);
562 ctxfillStyle = "#FFD700";

563 cte fillText("SCORE: " + score, canvas.width/2, canvas.height/2);
564 ctx.ﬁI!Style = "#000000";

565 ctx.strokeText("SCORE: " + score, canvas.width/2, canvas.height/2);
566 setTimeout(startGame, 2500);

567 r }

568 //lose game screen if the player dies

569 [H function loseGame(){

570 stopTimers();

571 player.sprite=playerSprite2;

572 resetCanvas();

573 updateDisplay(;

574 drawSprite(player.sprite, player.x player.y,pixelSize);

575 drawAliens();

576 drawBarriers();

577 ctx.font = "50px Arial";

578 cbetextAlign = "center”;

579 ctx fillStyle = "#FFD700";

580 co fillText("SCORE: " + score, canvas.width/2, canvas.height/2);
581 ctx fillStyle = "#000000";

582 cbx.strokeText("SCORE: " + score, canvas.width/2, canvas.height/2);
583 setTimeout(offerRestart, 2500);

584 - }

Figure 46

First winGame will be discussed.
Initially the timers are stopped. Next some basic variable handling occurs. Leveling up will:

Add 200 to the score

Make the player fire faster

Make the aliens fire slightly faster

e Increase the level
o Aliens also have their movement speed in part based on level (012)

Next printing text is handled, this has been described in (008), but the winGame and
loseGame sizing is slightly different. First, all the text is set to 50 pixels large.

e Inline 557, textis aligned to the center. Because of this alignment, wherever text is placed,
it will be centered and not taking up differing space depending on the text width.

e Lines 558 and 559 print the level 4 of the way down the screen in gold.
e Lines 560 and 561 outline this in black.

e Lines 562 to 565 do the same thing but for the score, and perfectly in the middle of the
screen.

e Line 566, runs the function startGame after 2500 milliseconds, or 2.5 seconds.

loseGame runs in a very similar fashion. This one stops for an indefinite amount of time,
so stopTimers is called (003) to avoid background running. The player’s sprite changes to one of
a broken player ship (004) to show that the player has lost. After this, it resets the canvas (008),
prints the score and level in the top left (008), and redraws the player without moving them (024).
After this the function draws the aliens and barriers (017) so that the player can see exactly what
hit them and how they lost. Now the score is printed in the center of the screen the same as in
winGame, so the player can see how well they did. After 2500 milliseconds, or 2.5 seconds, the
player is offered an option to restart the game (021).

021: Restart Conditions

580 © function offerRestart(){
1 ' ctx.font = "20px Arial”;
‘ ctx.textAlign = "center”;
3 | ctcfillStyle = "#FFD700";
584 ct fillText("HOLD RIGHT AND SHOOT FOR RESTART", canvas.width/2, canvas.height*3/4);
585 | ctxfillStyle = "#000000";
| ctx.strokeText("HOLD RIGHT AND SHOOT FOR RESTART", canvas.width/2, canvas.height*3/4);
5 movementTimer = setinterval(restartGame, 350);
588 | }
9 function restartGame(){
findPressedButtons();
findUnpressedButtons();
if(pressedButtons[0] == 1 && pressedButtons[2] == 1){
| playerFireTime = 850;
594 i alienFireTime = 1000;
| stopTimers();
| level = 1;
i score = Q;
| i startGame(),;
|
|

g
(4%)
— —1F

Figure 47

The first function offerRestart happens 2.5 seconds after the player loses, and it creates
text in the same way as in (020), giving the player instructions to restart the game. Now, every
350 milliseconds the game will run restartGame.

The function first checks for all the buttons the user is and is not holding down (010). If the
player is holding the joystick both up and to the right, the fire speed resets, the timers are stopped
(003), and the level is set back to 1, and the score to 0. Then, startGame (006) is run, which will
run everything at its initial conditions, completely restarting the game. If the player is not holding
the buttons, nothing happens.

022: Sprite Animation

606 //handles all sprite animation in place. Alien change and death
607 function changeSprites({

608 for(i=0;i<alienArray.length;i++){

609 [= switch(alienArray[i].spriteld){

610 case 31:

611 alienArray[il.sprite = alien32;
612 alienArray[i].spriteld = 32;
613 break;

614 case 32

615 alienArray[il.sprite = alien31;
616 alienArray[i].spriteld=31;
617 break;

618 case 21:

619 alienArray[il.sprite = alien22;
620 alienArray[i].spriteld=22;

621 break;

622 case 22:

623 alienArray[il.sprite = alien21;
624 alienArray[i].spriteld=21;

625 break;

626 case 11:

627 alienArray[i].sprite = alien12;
628 alienArray[il.spriteld=12;

629 break;

630 case 12

631 alienArray[i].sprite = alien11;
632 alienArray[i].spriteld=11;

633 break;

634 case 1:

635 alienArray(i].sprite=deadAlien2;
636 alienArray(il.spriteld=0;

637 break;

638 case 0:

639 alienArray.splice(i,1);

640 break;

641 - }

642 - }

643 E—% for(i=0;i<barrierArray.length;i++){

644 [switch(barrierArrayl[il.spriteld){

645 case 5:

646 i barrierArrayfi].sprite = barrierSprite6;
647 barrierArray[i].spriteld=6;
648 i break;

649 case 6:

650 i barrierArray.splice(i,);

651 | break;

652 - }

653 = }

654 - }

Figure 48

In (003), timers were set, and one of them was for changing sprites. This function runs
every 500 milliseconds, or every half second. Every alien is checked in a for loop, and the alien’s
spriteld is checked so the program knows what sprite they are. Based on this sprite, it is switched
to another sprite, which makes it look animated.

If an alien dies, its spriteld is changed to 1. This is the first step of a death animation. This
will change to 0, the second part of the death animation, and it will then disappear and be spliced
out of the array (013).

Barriers are only active here if they reach case 5. They don't animate until their death
animation, where they will hit their last 2 sprites, then be spliced out similarly to the aliens.

Note: sprites are shown in (004).

023: Collision Function

655 | //helper function for collision to help code be neat
656 [function collides(object1, object2){

657 if(object2==null)

658 | return false;

659 else if(object2.x+object2. width>object1.x

66(| && object2 x<object1.x+object1.width

661 . && object2.y<object1.y+object1.height

662 [| && object2.y+object2.height>object1.y){

663 1 return true;

664 - }

665 else{

666 i return false;
667 }

668 }

Figure 49

Object
(object.x, object.y)

object.height

| I—

Object.width

Figure 50

This is the general structure for an object, it has an x, based on its distance from the side
of the screen, and it has a y, based on its distance from the top of the screen. These are the
different parts of the object:

e Object.x is the left side of the object

o Object.x+object.width is the right side of the object

e Object.y is the top of the object

e Object.y+object.height bottom of the object

In line 656 the function gets two objects, and names them object 1 and object 2 for the
generalization of the function. First it checks if object 2 is null, which is checked so the function
does not return an error for no object existing. If it is null, it cannot collide, false is returned (no
collision).

In line 659 the function starts a multi-line if statement. The four bullet points above are
further explained in a more understandable language.

Note: (0,0) is the top left corner of the screen. X increases to the right, and Y increases
downwards.

Else if(
e The right side of the second object is farther right than the left side of the first object
e The left side of the second object is farther left than the right side of the first object
e The top of the second object is above the bottom of the first object
o The bottom of the second object is lower than the top of the first object
)
If all of these conditions are true, then one object’s hitbox is inside another’s hitbox, so
there is a collision. If this is the case, the function will return true (collision).
If all of these conditions are not true, then it means one object’s hitbox is not inside

another’s hitbox, so there is no collision. If this is the case, the function will return false (no
collision).

024: Sprite Drawing

//draws the defined sprites where they should be
function drawSprite(sprite, posx, posy, size){
for(var height=0;height<sprite.length;height++){
var spriteX = sprite(height];
for(var width=0;width <spriteX.length;width++){
| if(spritefheight][width] == 1){
| ctfillRect((width*size) + posx,(height*size) + posy,size +1,size +1);

Figure 51

Function drawSprite takes in four variables. The first is the sprite assigned to the object; it
will be from the list in (004). After it will take posx, which is the object's x coordinate, and posy,
which is the object’s y coordinate. Next size is inputted, which is the size desired for each pixel.

This is a nested for loop creating a grid, similar to in (006). The function creates this grid
using white squares where a 1 is found in the array, and empty squares where there is no 1.
Recall in (004) where there was a barrier sprite with all the 1’s highlighted, showing the shape of
the barrier.

The function goes through each row, creating an array for that row, calling it spriteX.
Searching through this array, where there is a 1, a white rectangle is printed. Once each row is
searched, the sprite will be completely printed.

The white rectangle is drawn using:
fillRect(x coordinate of top left corner, y coordinate of top left corner, x length, y length);

where:

e X coordinate: width * size puts the white rectangle in its place in the sprite horizontally.
Adding posx puts the sprite in its place on the entire game screen

e Y coordinate: height * size puts the white rectangle in its place in the sprite vertically.
Adding posy puts the sprite in its place on the entire game screen

e (for both) size + 1 is the length of the edge of the square. Add 1 to this pixel width so the
player can’t see the grid of computer pixels underneath the sprite model, and it looks solid.

